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ABSTRACT

As a step towards developing a new design
philosophy, one that moves away from the
traditional empirical approach used today in
design towards a science-based design
technology approach, a test series of 7 iso-
tropic shells carried out by Arbocz and
Babcock [1] at Caftech is used. It is shown how
the hierarchical approach to buckling load
calculations proposed by Arbocz et al {2] can
be used to perform an approach often called
“high fidelity analysis”, where the uncertainties
involved in a design are simulated by refined
and accurate numerical methods. The Delft
Interactive Shell DEsign COde (short,
DISDECO) is employed for this hierarchical
analysis to provide an accurate prediction of
the critical buckling load of the given shell
structure. This value is used later as a
reference to establish the accuracy of the
Level-3 buckling load predictions. As a final
step in the hierarchical analysis approach, the
critical buckling load and the estimated
imperfection sensitivity of the shell are verified
by conducting an analysis using a sufficiently
refined finite element model with one of the
current generation two-dimensional sheil
analysis codes with the advanced capabilities
needed to represent both geometric and
material nonlinearities.

Professor, Facuity of Aerospace
Engineering, Fellow AIAA

**  GQenior Engineer, Structures and Materials
Competency, Fellow AIAA

Copyright © 2002 by J. Arbocz and

J.H. Starnes

Published by AIAA with permission

2396

INTRODUCTION

It is generally agreed that, in order to make
the development of the Advanced Space
Transportation System a success and to
achieve the very ambitious performance goals
(like every generation of vehicles 10x safer and
10x cheaper than the previous one), one must
make full and efficient use of the technical
expertise accumulated in the past 50 years or
so, and combine it with the tremendous
computational power now available. It is
obvious that with the strict weight constraints
used in space applications these performance
goals can only be achieved with an approach
often called “high fidelity analysis”, where the
uncertainties involved in a design are
simulated by refined and accurate numerical
models. In the end the use of “high fidelity”
numerical simulation will also lead to overall
cost reduction, since the analysis and design
phase will be completed faster and only the
reliability of the final configuration needs to be
verified by structural testing.

The light-weight shell structures used in
aerospace applications are often buckling
critical. The buckling load calculations are
usually carried out by one of the many
currently available finite element based
computer codes [e.g., 3,4]. In order to reduce
computer execution time, buckling analyses
are often done using only the small
displacement stiffness matrix Kg. This
approach is used, despite the fact that the
“initial stability problem” so formulated can only
give physically meaningful answers if the
elastic solutions based on Kg (at least
approximately) are identically equal to zero [5).

When the qualitative nature of the expected
behavior is completely unknown, the stability of
the structure must be investigated using the full
tangent stiffness matrix Ky in order to
guarantee accurate and reliable buckling load
and buckling mode predictions. In order to
discover the load level at which Kt ceases to

be positive definite (that is, the load level when
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buckling occurs),
procedure is needed.

In addition, it is imperative (though often
compietely neglected), that at the beginning of
any stability investigation, the accuracy of the
discrete model used should be checked
against available analytical or semi-analytical
results. This step is part of a mandatory study
needed in order to establish the dependence of
the buckling load predictions on the mesh
distribution used. Furthermore, as has been
pointed out in the past by Byskov [6], if one
carries out imperfection sensitivity
investigations, which involve an extension of
the solution into the postbuckling response
region, further mesh refinement may be
needed since the wavelength of the dominant
large deformation pattern may often decrease
significantly.

Finally, whenever one is engaged in shell
stability analysis it is especially important that
one is aware of the possible detrimental effects
of a whole series of factors, that have been
investigated extensively in the late 1960s and
the early 1970s. Thus for an accurate and
reliable prediction of the critical buckling load
of a real structure, one must account not only
for the influence of initial imperfections [e.g.,
7,8] and of the boundary conditions [e.g. 9], but
one must also consider the effects of stiffener
and load eccentricity [e.g., 10] and the
prebuckling deformations caused by the edge
restraints [e.g. 11,12].

A test series of 7 isotropic shells carried
out by Arbocz and Babcock [1] at Caltech is
used to illustrate how such a hierarchical
approach to buckling load calculations can be
carried out. The platform for the multi-level
computations, needed for an accurate
prediction of the critical buckling loads and a
reliable estimation of their imperfection
sensitivity, is provided by DISDECO [13]. With
this open ended, hierarchical, interactive
computer code the user can access from his
workstation a succession of programs of
increasing complexity.

a step-by-step analysis

SOLUTION OF THE BUCKLING PROBLEM

In the following it will be shown that with the
help of DISDECO, the Delft Interactive Shell
DEsign COde, the shell designer can study the
buckling behavior of a specified shell, calculate
its critical buckling load quite accurately and
make a reliable prediction of the expected
degree of imperfection sensitivity of the critical
buckling load. The proposed procedure
consists of a hierarchical approach, where the
analyst proceeds step-by-step from the simpler
(Level-1) methods used by the early
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investigators to the more sophisticated
analytical and numerical (Level-2 and Level-3)
methods used presently.

Level-1 Perfect Shell Buckling Analysis

The geometric and material properties of
the isotropic shell A-8 of Ref. [1] are listed in
Table 1.

Table 1.

Geometric properties of Caltech isotropic shell A-8

tiotal (= h) =0.00464 in (=0.117856  mm
L =8.0 in {=2083.2 mm
R =4.0 in (=101.6 mm
E =15.2x10%  psi (= 1.0480x105

v =0.3

N/mm

2

Assuming a perfect shell(W=0) and the
following membrane prebuckling state

w(® —nw, =h7\—;2%
(1)
2
Ehc 1, o
Flo) o =1 T,
cR 2 y
where
o N Eh
l=——-=-—x—, = ——; = o~sh
oor Ner %~ GR Nge = oce

andc = \/3(1 - v2)

then the nonlinear equations governing the
prebuckling state are identically satisfied and
the linearized stability equations reduce to a
set of equations with constant coefficients. It
has been shown in Ref. [14] that by assuming
an asymmetric bifurcation mode of the form

umber of axial half waves
umber of circumferential full waves
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one can reduce the solution of the linearized
stability equations to an algebraic eigenvalue
problem. Notice that the eigenvalue App
depends on the wave numbers m and n. The
critical load parameter A. is the lowest of all
possible eigenvalues. Thus finding Ag
involves a search over the integer valued wave
numbers m and n. Using the Level-1




computational module AXBIF [14] a search
over integer valued axial half-wave numbers m
yielded the lowest eigenvalues listed in Table 2
for the specified circumferential wave numbers
n.

Table 2.

Buckling loads of the Caltech isotropic shell A-8
Buckling load map for the perfect shell

using AXBIF [14] (Ngs = - 49.51517 Ib/in)

n=4  AQ'=1.000 (m = 34)
n=5  AQ'=1.000 (m = 34)
n=6 AQ = 1.000 (m = 34)
n=7  AJ'=1.000 (m = 33)
n=8  AJ'=1.000 (m = 33)
n=9 AJ'=1.000 (m = 1)
A = 1.000 (m = 33)
n=10 AT'=1.000 (m = 33)
n=11 AJ=1.000 (m = 33)
n=12 Al'=1.000 (m =32)
n=13 AJ'=1.008 (m =2)
AT = 1.000 (m = 32)
n=14 AM=1.000 (m =32)
n=15 Ag =1.001 (m = 3)
AQ' = 1.000 (m = 31)
As is known the lowest eigenvaiue is a

repeated eigenvalue with a high degree of
multiplicity. The family of modes belonging to
the lowest eigenvalue Ac = 1.000 lie on the so-
called Koiter circle [7].

To facilitate the interpretation of the
numerical results obtained, DISDECO provides
the user with various graphical interfaces.

Thus the results of the search for the critical
(lowest) buckling load A, can be displayed in
a contour map as shown in Fig. 1. In order to
provide a quick overview of the distribution of
eigenvalues, the values displayed in the
contour plot are normalized. Thus in Fig. 1 the
following normalized eigenvalues are plotted

m
4951517

m
C

Notice that the critical buckling load can be
caiculated using a simple multiplication
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NG = Ag'Nge =
1.000(-49.51517) = —49.51517 Ib/in

Level-2 Perfect Shell Buckling Analysis

To investigate the effects of edge constraint
and of different boundary conditions on the
critical buckling load of the perfect shell

(W=0) one has to switch to the Level-2
computational module ANILISA [15]. In this
module the axisymmetric prebuckling state is
represented by

wo) = hW,, +hwg(x)
3)

Eh® 1
F0) - —cﬁ-[_—ékyz +R%t,(x))

It has been shown in Ref. [15] that with these
assumptions the prebuckling problem is
reduced to the solution of a single fourth order
ordinary differential equation with constant
coefficients, which always admits exponential
solutions. Closed form solutions for simply
supported and clamped boundary conditions
have been published in the literature [16].

For isotropic shells the linearized stability
equations admit separable solutions of the
form

wih = hwq(x)cosngé
(4)

g = ERN?

f1(x)cosné

where 6 =Y .

R

Using a generalization of Stodola’s method
[17] first published by Cohen [18] the resulting
nonlinear eigenvalue problem is reduced to a
sequence of linearized eigenvalue problems.
The resulting ordinary differential equations are
solved numerically by a technique known as
“parallel shooting over N-intervals” [18]. Notice
that by this approach the effect of edge
restraint and the specific boundary conditions
are satisfied rigorously. To find the critical load
parameter A an n-search must be carried

out, whereby one must be careful to find not a
local minimum but the absolute minimum. As
can be seen from the resuits presented in
Table 3 the n-search using membrane
prebuckling and a rigorous satisfaction of SS-3
(Nx =V =w =My =0) boundary conditions for
the stability problem yields indeed the repeated

eigenvalues AQ' ~1.0 located on the “Koiter”



circle. The slight variations in the eigenvalues
are due to the fact that both the axial half-wave
numbers m and the circumferential full wave
numbers n are integers.

Table 3
Buckling loads of the Caltech isotropic shell A-8

Table 3 - continuation

(Ngy =—49.51517 Ib/in)
Buckling load map for the perfect shell using
ANILISA [15](B.C. Ny =v=w =M, =0)

Prebuckling: Membrane Nonlinear
n=8 AT = 1.10977(m=1) AD'=0.951155
AT = 1.00001(m=33) AD'=0.966181
n=9 AT = 1.00004(m=1) AD'= 0.934990
AT = 1.00000(m=33) AD'= 0.957035*
n=10 AT = 1.08160(m=1) AD'=0.940209
AT = 1.00011(m=33) AD'=0.946124"
n=11  Al'=1.12539(m=2) ADQ'=0.931492*
AT = 1.00035(m=32) AD=0.939878
n=12  AM-1.01481(m=2) AD'=0.915200"
AT = 1.00004(m=32) AQ'=0.931464
n=13  AM=1.00836(m=2) AD'=o0.908528"
AT = 1.00004(m=32) AQ!-0.918482
n=14  Al'=1.04064(m=3) AD'=0.903256
AM = 1.00030(m=31) AD'= 0.906963*
n=15  AM=1.00060(m=3) AD=0.891368
AT - 1.00000(m=31) A0'- 0.898837*
n=16  AM=1.02041(m=3) AQ-0.885185
AT = 1.00023(m=31) AD'= 0.886606
n=17  AD=1.00086(m=4) AD=0.875881
AT = 1.00001(m=30) AD'=0.878312
n=18  AM=1.01300m=4) AD'=0.868406"
AT = 1.00027(m=30) AD'= 0.869200
n=19  Al'=1.00014(m=5) A]'=0.861087
AT = 1.00001(m=29) AD'=0.861626"
n=20  AM=1.00164(m=6) AD = 0.854891

AT = 1.00006(m=28)

Al = 0.855033

Prebuckling: Membrane Nonlinear

n=21  Al=1.00378(m=7) AD'=0.849839"
AT = 1.00023(m=27) ADI= 0.849927
n=22  AM-1.00183(m=7) AD=0.846336"
AT = 1.00014(m=27) AD'= 0.846344
n=23  AD=1.00114(m=8) Al'=0.844502
AT = 1.00012(m=26) AQ'= 0.844511*
n=24  AQ'=1.00071(m=10) AD'= 0.844480"
AT = 1.00011(m=24) A= 0.844481
n=25 A = 1.00000(m=11) AQ'= 0.846279"
AT = 1.00000(m=23) AD!= 0.846280
n=26  AP=1.00002(m=13) AD= 0.849833"
AP = 1.00001(m=21) AD'=0.849833
n=27  Al'=1.00027(m=17) AQ'= 0.854990"

AT = 1.00032(m=18) AD= 0.854990
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* anti-sym at x = L/2.

The most accurate Level-2 solutions are
obtained when one employs a rigorous
nonlinear prebuckling analysis. As can be seen
from the results listed in Table 3, for this
particular shell the critical buckling loads with
nonlinear prebuckling are always lower than
the corresponding results obtained using a
membrane prebuckling analysis. Notice that
the critical load Nq can be calculated easily by
multiplying the lowest eigenvalue Ac by the
normalizing factor Ng¢ =-49.51517 Ib/in
yielding

Ne =AcNge = -41.8151b/in  (n = 24)

in fig. 2 the critical buckling modes using
membrane and rigorous nonlinear prebuckling
are depicted. Notice that the solutions with
nonlinear prebuckling differ significantly from
the ones obtained wusing membrane
prebuckling, especially at n = 24 where one
observes a typical edge buckiing type
behavior.

Level-3 Perfect Shell Buckling Analysis

To verify the earlier predictions the finite
difference version [20] of the well known shell




analysis code STAGS ([21] will be used. In
order to be able to represent the measured
initial imperfections accurately, the whole shell
will be modeled.

Initially a convergence study must be
carried out in order to establish the mesh size
needed for accurate modeling of the buckling
behavior of the shell in question. For this
purpose the asymmetric bifurcation from a
nonlinear prebuckling path option was used,
whereby the earlier results obtained with the
Level-2 module ANILISA listed in Table 3
serve as a reference.

In the convergence study, at first, for a fixed
number of mesh points in the axial direction
(NR = 161) the number of mesh points in the
circumferential direction (NC) was increased
until the bifurcation load approached a
horizontal tangent. As can be seen from Fig. 3
the results converge to a limiting value from
below at about NC = 261. Next, for a fixed
number of mesh points in the circumferential
direction (NC = 161) the number of rows (NR)
was varied. This time convergence is from
above and as can be seen from Fig. 3 the
horizontal tangent is reached at about NR =
261.

To illustrate the difference between using
coarser meshes to speed up the computations
and the finer meshes which produce (nearly)
converged solutions, initially the first three
eigenvalues and eigenvectors are computed.

Using a mesh of 161 rows and 181 columns
(a model with 89488 D.O.F.'s and a maximum
semi-bandwidth of 713) and SS-3 boundary
conditions (Ny =-Ng,v=W =My =0) the
following 3 lowest eigenvalues were obtained:

) —0.833361 (n=26)

N =2 {Ng, = -41.264 1bAn

22 = 0833374 (n=26) —

N) = Al2ING, =- 41.265 Ib/in

23 =0.834238 (n=25)

N = APNg, = ~41.307 Ibfin

Next these computations were repeated using
a mesh of 261 rows and 261 columns (a model
with 207508 D.O.F.'s and a maximum semi-
bandwidth of 1037) and the same S8S-3
boundary conditions vyielding the following
results
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A = 0.844993 (n=24)
N = NG, = - 41.840 1b/in

—

A2 =0.845006 (n=24)

N2 = 2 @INg, =- 41.8411b/in

-

23 = 0.845100 (n=25)
N = Al¥ING, = —41.845 Ib/in

Details of the critical mode are displayed in
Figures 4-5 for the coarser 161x181 model and
in Figures 6-7 for the finer 261-261 model.
Notice that using the more refined 261x261
model the sequence of the 3 lowest buckling
loads and the corresponding buckling modes
agree closely with the predictions obtained with
the Level-2 module ANILISA (see aiso Table 3)

IMPERFECTION SENSITIVITY STUDY
That initial imperfections may decrease the
load carrying capacity of thin-walled shell
structures is by now widely known and
accepted. However, in order to calculate the
effect of initial imperfections one must know
their shape and amplitude, an information that
is rarely available.

In the absence of initial imperfection
measurements, as a first step one must
establish whether a given shell-loading
combination is imperfection sensitive, and if
the answer is positive to estimate how
damaging certain characteristic imperfection
shapes are.

Single Axisymmetric Imperfection

Based on Koiter's pioneering work on the
effect of initial imperfections [7,22] the simplest
imperfection model consists of a single
axisymmetric imperfection

W = hE cosin% (5)

where i is an integer denoting the number of

half-waves in the axial direction and E; is the

amplitude of the axisymmetric imperfection
normalized by the shelt wall-thickness h.

If one assumes that both the axial load and the
boundary conditions are independent of the
circumferential coordinate, then the prebuck-



ling solution will also be axisymmetric, a fact
that simplifies the solution considerably.

Level-1 Analysis of Axisymmetric
imperfection
Neglecting the effect of the prebuckling
boundary conditions the noniinear equations
governing the prebuckling state admit the
following axisymmetric solutions

w0 = hw,, +hwg(x)
(6)

2
Eh< 1
PO =g’ o0

where
A = X
Wa(X)=———ht 4 cosin—~
o(¥) ro; % €1 L

A 1+ §21ai2) En3 -

X
fo(X)=}\’Ci Y 2ai2Ké2 £ cosin -
. 7)
1 o=t (1+§21ozi2)2
Ac =§'{ai D11+_2;2—Ké;—
i

Notice that the linearized stability equations
become now a set of equations with variable
coefficients. The reduced wave number o

and the normalized stiffness coefficients Kzg,

B21 and D11 are all listed in Ref. [14].

It has been shown in Ref. [14] that by
assuming an asymmetric bifurcation mode of
the form

WO = hsinmrXcosn¥ 8
nancoan (8)

where

m = k = number of axial half waves
n = ¢ = number of circumferential full waves

a Galerkin type approximate solution yields for
the eigenvalues (read, buckling loads) A of the

problem a characteristic equation in the form of
a cubic polynomial

A% — (g + 2hc; - C1E1BimomN? (9)
+{2hmnt + Ag; +(C2 - C1)EBizamrgH

- - - - _2 2
—{Amnt + C2&13i=2m + (C3 — C4dim )54 }}»Ci =

where

0
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Sj=om =1 ifi=2m ;
=0 otherwise
Sm=1 ifi=m

=0 otherwise

and the constants C4,Cp,... are listed in

Appendix C of Ref. [14].

Here it must be remembered that one will
only get any noticeable degrading influence of
the assumed axisymmetric imperfection if £4

is negative and if the coupling condition i=2m
is satisfied. The physical explanation for this
can be found in Koiter's 1963 paper [22].
Furthermore, in order to obtain the smallest
real root of Eq. (8), for a given axisymmetric
imperfection £4 an n-search must be carried

out. It should also be noticed that the terms
involving the Kronecker delta &§j~-om are all

linear in 21, and thus they dominate the buck-

ling behavior of the shell with axisymmetric
imperfection.

Assuming that the most likely axisymmetric
imperfection of the silver pointed wax mandrel
used to electroplate the isotropic shell A-8 is
given by

W=ht, cos2n% (10)

the Level-1 DISDECO computational module
AXBIF generated the solid curve shown in Fig.
8. Notice that the curve is normalized by

N¢¢ =-49.51517 Ibfin, the classical buckling

load of an isotropic shell, obtained around
1910 by Lorenz [23], Timoshenko [24] and
Southwell [25]). Notice also that an initial
imperfection amplitude equal to the wall

thickness of the shell (§; =-1.0) generates a
“knockdown factor” of Ao =0.706, resulting in
the following buckling load

Ng =AcNge =
0.706{—49.51517) = -34.958 Ib/in

Howaever, if one assumes an imperfection in
the form of the classic axisymmetric buckling
mode of Koiter [7]

W =h§; cosicen%

where



. L f2¢
'°"=;\’ﬂ ; C=\J3(1"V2)

then for the isotropic shell A-8 i, ~ 34.0, and

the Level-1 DISDECO computational module
AXBIF found that the minimum buckling load

occurred when m= -;—Ic, tor ditferent values of

n (which depended on the value of &1). These

results are shown in Fig. 9.
For this case an initial imperfection amplitude
equal to the wall thickness of the shell

(€4 = -1.0) generates a “knockdown factor” of
Ac =0.196 resulting in the following rather low
buckling load

Ng = AcNee =
0.196(~49.51517) = -9.705 Ib/in

The last two buckling loads clearly
demonstrate the importance of the shape of
the initial imperfections involved and the role of
the corresponding eigenvalues. Using the long
wave axisymmetric imperfection (i=2) the
corresponding normalized axisymmetric
buckling load (eigenvalue)of the perfect shell is
lci =144.321 (a very high vaiue) yielding a

low imperfection sensitivity. For the short wave

imperfection (i=34) the corresponding
normalized axisymmetric  buckling load
(eigenvalue) of the perfect shell s

A¢; =1.000. Thus it lies on Koiter's circie
yielding a high imperfection sensitivity.

Level-2 Analysis of Axisymmetric
imperfection
Since the external loading, the boundary
conditions and the assumed initial imperfection
are axisymmetric, therefore the prebuckling
solution will also be axisymmetric. It has been
shown in Ref. [26] that by assuming

W) = hWy + hw (x)
(1)

2
) Eh” 1,2 g2

F cR{ 27..y + R 1o (x)}
the solution of the nonlinear partial differential
equations governing the prebuckling state can
be reduced to the solution of a single fourth
order ordinary differential equation with
constant coefficients, which can be solved
routinely.

For isotropic shelis the resulting linearized
stability equations admit separable solutions of
the form
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w =h wi(x)cosn®

(12)
2
F = EF::h fi(x)cosn®
where 0= !-.
R

Solution proceeds as outlined on Ref. [26].
Using an updated version of the Level-2
computational module MANILISA [27] and SS-
3 (Nx =v=w=My =0) boundary conditions
one obtains the results presented in Table 4.
Notice that a rigorous nonlinear prebuckling
analysis was used and an n-search was
carried out for each specified axisymmetric

imperfection amplitude 51.

The values of Table 4 are plotted as the
dashed curve in Fig. 9. A comparison of the
results obtained via the Level-1 module AXBIF
(solid curve) and the Level-2 module
MANILISA (dashed curve) shows that also in
the case of axisymmetric imperfections a
rigorous pre-buckling analysis should be used.
Especially for very small initial imperfection

amplitudes (IE1|<0.1) the Level-1 predictions
are inaccurate and overestimate the critical
buckling load. Notice further that both curves
have been normalized by classical buckling
load Ng; = —49.51517 Ib/in. This way the effect

of using a rigorous prebuckling analysis
becomes easily discernible.

Table 4
Buckling loads of the Caltech isotropic shell A-8
(Ngg = —49.51517 Ibfin)

Short wave axisymmetric
W/h=F cosa41t-E using MANILISA [27]

imperfection

(B.C.:Ny =v=w=My =0)

&y A Eq | D

0. |0.844480 (n=24) |- 0.1 |0.549168 (n=17)
.001 | 0847863 (n=21) |-0.2 |0.420001 (n=17)
.0.02 |0.786079 (n=21) |- 0.3 |0.354645 (n=19)
.003 |0.740449 (n=21) |-0.4 |0.305484 (n=18)
.0.04 |0703421 (n=21) |-0.5 |0.271507 (n=17)
.005 |0671958 (n=21) |- 0.6 |0.247002 (n=16)
006 | 0644481 (n=21) |-0.7 [0.229213 (n=15)
.007 |0.620047 (n=21) |- 0.8 |0.214064 (n=20)
.008 |0.598039 (n=21) |- 0.9 |0.200103 (n=19)
.009 |0.578030 (n=21) |- 1.0 |0.189011 (n=18




Level-3 Analysis of Axisymmetric
imperfection
Recalling that since both the axial load and
the boundary conditions are independent of the
circumferential coordinate, therefore the
prebuckling solution will also be axisymmetric,
one can use once again the asymmetric
bifurcation from a nonlinear prebuckling path
option. By modeling the full shell the code can
choose itself the critical number of full waves in
the circumferential direction. No n-search must
be carried out. Using a uniformly spaced mesh
of 161 rows and 181 columns and the user
written subroutine option WIMP to introduce
the following axisymmetric imperfection

W=10hcosZ1tE

(remember STAGS defines W  positive
outward) the following critical bifurcation load
was found

Ng = -32.582 Ib/in

As can be seen from Fig. 10 the critical
buckling mode has n=9 full waves in the
circumferential direction and a single half wave
in the axial direction. The nondimensional
bifurcation load of the shell with axisymmetric

imperfection is for E1 =10

Ne _ —32.582

-—€ _ = 0.65802
Ne, -49.51517

Ac

Notice also that the Level-2 MANILISA
prediction (AR =0.683, n=9) agrees closely
with the Level-3 STAGS-A prediction
(M - 0.658,n=9). The slight difference is
partly due to the fact that MANILISA uses the
Donnell type nonlinear shell equations,
whereas STAGS-A employs the higher order
Marlowe-Fligge equations.

Single Asymmetric Imperfection

The effect of a single asymmetric initial
imperfection can be investigated either by
solving the full nonlinear response problem or
by employing the well known Lyapunov-
Schmidt-Koiter [7] reduction technique. When
investigating the degrading effect of a single
mode asymmetric imperfection

T x y
W=t — = 13
Sz sinmn-cosnz (13)

where m and n are integers denoting the
number of axial half-waves and the number of
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circumferential full waves, respectively,
instability occurs at the limit point of the
prebuckling state in the generalized load-
deformation space. Assuming that the
eigenvalue problem for the critical (lowest)
buckling load A, will yield a unique asym-

metric buckling mode w®  then for an
imperfect shell (£, #0) the shape of the

generalized load-deflection curve in the vicinity
of the bifurcation point A = A is given by the
following asymptotic expansion

(A-Ac)E=Acat% + A bES + .

- - - (14)
—Acafy — (A=A )BE2 + O(EL>)

Expressions for the postbuckling coefficients
“a” and “b" and the imperfection forms factors
“o” and “B" are derived in References [28,29].
If the limit point is close to the bifurcation point,
then the maximum load A4 that the structure
can carry prior to buckling can be evaluated
from Eqg. (14) by maximizing A with respect to
£. For cases where the first postbuckling
coefficient “a” is zero, this analysis yields the
modified Koiter formula [29]

(1-p)*'2 = 24-zab11- L1 p, )2 | 19)

where pg = Ag/A¢.

Notice that, if the second postbuckling
coefficient “b" is positive, Eq. (15) has no real

solutions. Thus the buckling load of the
specified shell-loading combination is not
sensitive to small asymmetric initial

imperfections of the shape given by Eq. (13).
if, however, the second postbuckling
coefficient “b” is negative, the equilibrium load
A decreases following buckling and the
buckling load of the real structure Ag is
sensitive to the asymmetric initial imperfection
specified by Eq. (13).

Level-1 Analysis of Asymmetric
Imperfection
For the isotropic shell under investigation,
as can be seen from the partial results listed in
Table 2, there are many identical eigenvalues.
Hence, strictly speaking, the proposed form of
the perturbation expansion given by Eqgs. (14)
is not applicable, since the nonlinear
interaction between the many nearly
simultaneous eigenmodes is not accounted for.
Thus the following results, where one
considers the eigenfunctions corresponding to
certain critical eigenvalues chosen one at the



time, can at best give an indication as to the

severity of the expected imperfection
sensitivity.
Initially, we assume a long wave

asymmetric imperfection affine to one of the
critical buckling modes of the perfect Caltech
isotropic shell A-8, computed by the Level-1
computational module AXBIF (see also Table
3)

2 (16)

W =hEs sinn—t—cosgl
Next using the Level-1 computational module
BFACT to carry out the initial postbuckling
analysis yields the following results

Ac = AQ =1.00004(M=1n=9)

b =-0.010636 a=p=10
Substituting these values into Eq. (15), one
can piot the degrading effect of an asymmetric
imperfection of the shape given by Eq. (16) as
a function of its amplitude &2 . As can be seen

from Fig. 11 an initial imperfection amplitude
equal to the wall thickness of the shell

(2 =10) generates a “knockdown factor” of

As = 0.679, resulting in the following low
buckling load

Ng = AsNge =

0.679(—49.51517) = -33.621Ib/in

Notice that the imperfection form tactors
"a" and "B" are identical equal to 1.0 because

BFACT uses membrane prebuckling to
calculate the necessary first and second order
fields and the assumed asymmetric
imperfection shape of Eq. (16) is affine to the
buckling mode. If, however, one assumes the
following short-wave asymmetric impertection

— . X y
W =hép sin17n—cos27
12 T =

which lies aiso on the Koiter circle, then the
initial postbuckling analysis, done once again
by the Level-1 computational module BFACT,
yields the following results

Ac =AY =1.00025(m = 17,n = 27)
b =-220.84 a=p=1.0

Using these values in Eq. (15) one obtains Fig.
12. As can be seen, an initial imperfection
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amplitude equal to the shell wall thickness
(E2 =1.0) this time generates a “knockdown

factor” of Ag=0.0249, resulting in an
unrealistically low buckling load of
Ng = AgNg¢ =

0.0249(-49.51517) = ~1.233 Ib/in

Here one obviously cannot rely on the
prediction of the Level-1 computational module
BFACT, which uses membrane prebuckling
analysis. In such a situation, as has been
shown by Hutchinson and Frauenthal [30], one
must repeat the postbuckling analysis using a
rigorous prebuckling solution which includes
the nonlinear effects due to the edge restraints.

Level-2 Analysis of Asymmetric
Imperfection
To investigate the effects of edge-constraint
and/or different boundary conditions on the
imperfection sensitivity of the critical buckling
load of the Caltech isotropic shell A-8 one has
to switch to the Level-2 module ANILISA [15]
and run its postbuckling analysis option. In this
module, as described earlier, the axisymmetric
prebuckling state is represented by Egs. (3),
the buckling modes by Egs. (4) and the
postbuckling state by

w@ = h[wq (x)+wp(x)cos nej
(18)
ERh2
c

F2) = [fe (x) + f3(x)cos 2n6]

where 8=y/R. Details of the computational

procedures used are reported in Refs. [15,26).
Initially, let us assume that the specified
asymmetric imperfection is given by Eq. (16)

W =hE, sinn—EcosQB

where 8=y /R . Running ANILISA with rigo-
rous prebuckling and SS-3 boundary
conditions (Nx = Ng, v =w =My =0)yields
the following results

e =AY =0.934990(n = 9)
b = -0.016202; a=0.20830; p = -0.38232
Using Eq. (15) to plot the degrading effect

of the asymmetric imperfection specif_ied by
Eq. (16) as a function of its amplitude Eo one



obtains the results displayed in Fig. 13 as a
solid line.

Here one must remember that Koiter's
Sensitivity Theory is asymptotically exact, that
is, it yields accurate predictions for sufficiently
small imperfections, whereby what s
sufficiently small may vary from case to case.
Also, Eq. (15) was obtained by using the
perturbation expansion given by Eq. (14),
where terms of order (EE) are neglected. As
can be seen from the dotted curve plotted in
Fig. 13, by wusing more advanced
computational modules such as COLLAPSE
[31], where a fuil nonlinear solution is used and

terms up to and including order (F;Ea) are
kept, one obtains slightly lower predictions.
Notice that up to about &5 =0.1 the

asymptotic predictions from ANILISA and the
nonlinear results of COLLAPSE agree very
closely. Thus one can say that in this case the
range of validity of the asymptotic solution is

0285,50.1.
For an initial imperfection amplitude equal
to the wall thickness of the shell (€5 =1.0) the

asymptotic solution yields a “knockdown factor”
of Ag =0.806, which corresponds to a

buckling load of

Ns =AsNgs =
0.806(—49.51517) = -39.909 Ib/in

For the same initial imperfection amplitude
of & =1.0 the nonlinear solution using

COLLAPSE vyields a “knockdown factor” of
Ag =0.68, which corresponds to a buckling

load of

Ns =AgNg, =
0.68(—49.51617) = —-33.670 Ib/in

Let us next consider the short wave
asymmetric imperfection given by

W =hE, sin17n€-cos 240 (19)

where 08=y/R. The rigorous asymptotic
solution obtained by running ANILISA with SS-
3 boundary conditions (Ny =N,
v=w=M, =0) vyields now the following
resuits

Ac = AP = 0.844480(n = 24)
C C
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b =-0.50329; o = 0.20113; § = -0.012022

Using these values with Eq. (15) yields the
solid curve plotted in Fig. 14. Rerunning the
same case with the nonlinear module
COLLAPSE yields the dotted curve plotted in
Fig. 14.

Notice that in this case the asymptotic
predictions from ANILISA and the nonlinear
results from COLLAPSE agree closely up to

about £, =0.03. Thus the range of validity of
the asymptotic solution is only 0> &, < 0.03.

For an initial imperfection amplitude of
> =1.0 the asymptotic solution vyields a
“knockdown factor” of Ag =0.400, which
corresponds to a buckling load of

Ns =AgNcy =
0.400(—49.51517) = —19.806 Ib/in

For the same initial imperfection amplitude of

E>=1.0 the nonlinear solution vyields a
“knockdown factor” of Ag =0.30, which
corresponds to a buckling load of

Ng = AgNcs =

0.30(—49.51517) = —14.855 |b/in

For an initial imperfection amplitude equal
to the wall thickness of the shell (§; =1.0) the

asymptotic solution yieids a “knockdown factor”
of Ag =0.806, which corresponds to a

buckling load of

Ns =2AsNc, =
0.806(~49.51517) = -39.909 Ib/in

EA ITi PERF IONS

In order to apply the theory of imperfection
sensitivity with confidence, one must know the
type of imperfections that occur in practice. In
1969 Arbocz and Babcock [1} published the
results of buckling experiments where, for the
first time, the actual initial imperfections and
the prebuckling growth of the midsurface of
electroplated isotropic shells were carefully
measured and recorded by means of an
automated scanning mechanism.

Midsurface Initial Imperfections
As can be seen from Fig. 15, the measured

initial midsurface imperfections of shell A-8 [1]
show a rather general distribution dominated



by an n=2 mode. One can use the following
double Fourier series

(20)

T|s

7 18
= Wi cosin> + 2\7905 cose ¥
i=1 L £=1 R

19 99
+ Woe sine—é—+ 3> W coskn—f—cosll

£=1 k,2=1 R
115 _ X
+ Wis coskn-L—sin E‘—};-
k,£=1

to represent the measured initial imperfections
accurately, where Fourier coefficients with
absolute values less than 0.001 are neglected.

A convenient measure of the size of the
initial imperfections is their root-mean-square
(RMS) value. By definition

, 2nRL
2 _ iy Y12
Mns =5rr | JWyPaxdy @1
00
Thus
Arms 2 _1 -2 1 2 = 2
=) —;ZWM;ZZ(WWW.Q)
|

2 2

For the A-8 shell the RMS valiues are

Using these measured RMS values with the
previously discussed initial imperfection
modeis vyields the following buckling load
predictions:

For the long wave
axisymmetric imperfection W = h&; cosZn-E
if &y = Aaxi =—0.5077 then from
MANILISA [27] D' =0.824 (n=9)
P = 27RADIN,, = —1025.428/°S

For the short wave

axisymmetric imperfection W = h;cos 341:%

it €1 =Aax =—0.5077 then from

2406

MANILISA [27] AP =0.266 (n = 27)

P = 27RADING, = -331.024/°

Tuming now to the long wave asymmetric
imperfection W = hE sin n%cosQ%

if €2 = Agsy =0.6882 then from
COLLAPSE [31] A% =0.740 (n=9)

P = 27RADING, = -920.894/PS

For the short wave asymmetric

imperfection W = h&z sint 71:Ecos 24%

if £ = Aasy =0.6882 then from

COLLAPSE [31] AM' =0.324 (n=24)

PD = 27RADING, = —403.202'8

Comparing these buckling load predictions with
the  experimental buckling load of

Pexp = —782.7'°% it is clear that the long wave

imperfection models yield an upper bound,
whereas the short wave imperfection models
yield a lower bound.

For a more accurate estimate of the
buckling load one must use the measured
initial imperfections in codes like STAGS
[20,21] to carry out 2-dimensional nonlinear
collapse analysis. Employing a user written
subroutine WIMP to input the double Fourier
series of Eq. (20), the 161x181 STAGS model
yielded with SS-3 boundary condition
(Nx =Ny, v=w =M, =0) a collapse load of

Ps =-900.103"%, whereas the same model
with C-4 boundary condition (u=uq,
v=w=w,=0) yelded a collapse load of

P, = -976.467PS. Both of these values are
significantly higher than the experimental

buckling load of Peyp = ~782.7°°.

Boundary Initial Imperfections

in References [32,33] it was shown that
boundary imperfections can have a significant
degrading effect on the buckling loads of
axially compressed cylindrical shells. The
flatness of the end ring, attached to the load-
cell of the Caltech test set-up shown in Fig. 16,
was measured about 20 years after it was



used to test shell A-8. As can be seen in Fig.
17 there is a very large amplitude waviness of
the end support, with maximum deviations of
about + 3 wall thicknesses.

The measured boundary imperfections are
decomposed in a 1-dimensional Fourier series

Up =Up(y) = (23)

1 .
Ebh{EaO + E(an cosn%+bn smn%)}

This series then is used in STAGS [20] to
model the effect of boundary initial
imperfections using a modified C-4 boundary
condition

u=up(y) , v=w=w,y=0 (24)

and taking advantage of the dual loading
systems provided by the program.

Because the grooves of the end rings were
filled with liquid Cerrolow at the time shell A-8
was installed in the test set-up, it is to be
expected that after cooling off the hardened
liqguid metal has filled-in all the gaps. The effect
of this unknown end support was modeled by
varying the amplitude of the boundary

imperfection &, between 0 and 0.1. As can be

seen from the results displayed in Fig. 18,
including both the measured initial midsurface
imperfections of Eq. (20) and the measured
boundary imperfections of Eq. (23) with an

amplitude of &, ~0.035, the -calculated

collapse load agrees well with the experimental
buckling load.

DISCUSSION OF THE RESULTS

When comparing and analyzing the resuits
obtained sofar it is important to keep in mind
that all Level-1 and Level-2 solutions are
based on approximate representations of the
unknown functions. As pointed out in the
previous sections Level-1 solutions use a
single term double Fourier series
approximation to reduce the solution of the
stability problem, formulated in terms of partial
differential equations, to algebraic eigenvalue
problems. The effect of edge restraint is
neglected (one uses a membrane prebuckling
solution) and the assumed field functions

satisfy approximately SS-3 (Ny =-Ng,
v =w =My = 0) boundary conditions.

Level-2 solutions eliminate the -
dependence by a truncated Fourier
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decomposition in the circumferential direction.
The resulting system of nonlinear ordinary
differential equations are solved numerically,
whereby both the specified boundary
conditions and the effect of edge restraint are
rigorously satisfied. Thus by this approach the
only approximation is that one represents the
variation of the solution in the circumferential
direction by a single harmonic with n full
waves, whereby an n-search is used to
establish which wave number is the critical
one. The Level-2 module ANILISA can also be
used to investigate the effect of using different
boundary conditions. In Table 5, the results for
four different boundary conditions are
presented. As expected the fully clamped C4
boundary conditions has the highest critical
buckling load. The increase in load carrying
capacity with respect to the weaker SS3
boundary conditions is about the same as for
an isotropic shell of similar characteristic
dimensions (same L/R and RA ratios) of Ref.
[34].

The Level-3 solutions are based either on a
2-dimensional finite difference or finite element
formulation. In both cases, if one uses the
appropriate meshes, one can obtain rigorous
solutions where all nonlinear effects are
properly accounted for. The only real problem
with Level-3 type solutions is that for each
problem one must establish the appropriate
mesh size. Coarse meshes yield inaccurate
solutions. What is coarse depends on the
particular problem under investigation. Thus,
for a general nonlinear solution a convergence
study must always be carried out.

Using a hierarchical simulation platform
such as DISDECO (Delft interactive Shell
DEsign Code), where the analyst has at his
disposal computational modules of different
level of sophistication, such a convergence
study can be carried out relatively quickly and
accurately. In Table 5 a summary of the resuits
obtained in this study is presented using
normalized variables.

Table 5
Summary of buckling load calculations of the
Caltech isotropic shell A-8

(Ngs = —49.51517 Ib/in)

Perfect shell analysis

Level-1 Membrane Prebuckling -
Repeated eigenvalues with high multiplicity

AM=1000 — P,=-12445bs



Level-2 Nonlinear Prebuckiing

s8-3 AD! = 0.844480(n = 24)

- P, =-1050.9""®
sS-4 A =0.866974(n = 25)

- P, =-1078.9'"

c-3 A =0.910305(n = 24)
> P, =-1132.8"8
c-4 A =0.926871(n = 25)

- P, =-1153.4"S

Level-3 SS-3 B.C.

161x181 Model
A = 0.833361(n = 26)

- P, =-1037.1P%
261x261 Model
AN = 0.844993(n = 24)

- P, =-1051.6"8

imperfect Shell Analysis
Long wave axisymmetric imperfection -
&y = Agyj = -0.5077
Level-2 ARl =0.824(n=9)
P, =-1025.4"8
Short wave axisymmetric impsrfection -
&y = Aayj = —0.5077
Level-2 20! = 0.266(n = 27)
— P, =-331.0"%%
Long wave asymmetric imperfection -
22 = Aasy = 06882
Level-2 A% =0.740(n = 9)
- P =-920.9"P8
Short wave asymmetric imperfection -
E2 = Aasy = 0.6882
Level-2 AD =0.324(n = 24)
- Py =-4032P8

Measured midsurface initial imperfection -
see Eq. (20)

Level-3 SS-3 B.C. — Pg=-900.1%
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Level3 C-4 BC. — Ps=-976.5"8

Measured midsurface + boundary (&, = 0.035)
initial imperfection - see Egs. (20) and (23)

Level-3 Modified C-4 B.C.
(see Eq. (24)) — P =-780.0"s

Experimental Buckling Load
> Peyp =-782.7P8

Notice that by including both the midsurface
and the boundary initial imperfections one
obtained a very good agreement indeed.

The study of the buckling behavior of the
isotropic shell A-8 was undertaken with the
objective of establishing a rational analysis
procedure for incorporation of initial
imperfections into the design of buckling critical
structures. For a shell of revolution under
axially symmetric loading there are the
following four items necessary for the
application of the proposed procedure:

a. Buckiing analysis capability for shells of
revolution under axially symmetric loading.
(A computer code such as SRA [18] or
BOSOR [35] will satisfy this requirement.)

b. Imperfection sensitivity analysis capability
for shells of revolution under axially
symmetric loading. (A computer code such
as SRA [18] or STASOR [36] will satisfy this
requirement.)

¢. Geometrically nonlinear analysis capability
for a shell of revolution, which can handle
the asymmetry introduced by the general
asymmetric initial imperfections. (The
STAGS [20,21] computer code will satisty
this requirement.)

d. A design impertfection.

At the present time this is the most elusive
item.

The imperfection model introduced by
imbert [37], following an idea by Donnell and
Wan [38], is one approach, but has yet to be
extended to larger cylindrical shell structures
and other shells of revolution.

CONCLUSIONS

By relying on a series of theoretical results of
various degree of sophistication published in
the literature, the hierarchical approach used in
this paper has resulted in a series of buckling
load predictions of increasing accuracy. it was
shown that in order to be able to arrive at a
reliable prediction of the critical buckling load



and to make an estimate of its imperfection
sensitivity which can be used with confidence,
one must proceed step by step from simple to
more complex models and solution proce-
dures.

In particular one can state, that in order to
predict the critical buckling load accurately and
to make a reliable estimate of its imperfection
sensitivity, the nonlinear effects caused by the
edge restraint conditions must be included in
the analysis. Any solution procedure which
fails to account for these effects, should be
suspect of having provided incorrect results.

The most approximate of the here
described analyses, the Level-1 solutions
which neglect the effects caused by the edge
restraints, can still be used to great advantage
to establish the approximate behavior of a shell
subjected to the specified external loading.
However, depending on the value of the
prebuckling stiffness, resulting from the
different types of wall constructions used, the
solutions may be either conservative or
nonconservative.

As can be seen from the results shown in
Table 5, the buckling load of the isotropic shell
A-8 is sensitive to all the initial imperfection
shapes investigated. For a more specific
prediction of the final collapse load, the final
goal of a “High Fidelity Buckling Load
Analysis”, one has to carry out a refined Level-
3 analysis including measured values of all the
significant generalized imperfections such as
the traditional shell-wall imperfections,
variations in the shell-end or loading surface
geometry and especially for composite shells
variations in the shell-wall thickness
distribution. It has been shown in Ref. 33 that
such an approach yields very good agreement
between the predicted collapse load and the
experimental buckling load.
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Buckling ioads contour map for the Coltech isotropic shell A—8
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Fig. 6 Buckling mode of the axially compressed isotropic shell A-8
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Fig. 7 Buckling mode of the axially compressed isotropic shell A-8
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Imparfact on Sensitivity of Isotropic Shell A-8 — SS-3 8.c.
Axisymmetric Imperfection: Wbhar/h = xiboris[cos(2=piex/L)]
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Fig. 8 Imperfection sensitivity for long wave axisymmetric imperfection under axial compression
(SS-3B.C.: Ny =-Ng, v=W =My =0; Ngy =-49.51517 Ibfin).
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Fig. 9 Imperfection sensitivity for short wave axisymmetric imperfection under axial compression
(SS-3B.C.: Ny = -Ng, v=W =My =0; Noy = -49.51517 Ib/in).
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Asyrmmaetric imparfection sensitivity of isotrepic shell A—8 uming BFACT
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Fig. 11 Imperfection sensitivity for long wave asymmetric imperfection under axial compression
using Level-1 routine BFACT (Ng,s = —49.51517 Ib/in).
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Fig. 12 Imperfection sensitivity for short wave asymmetric imperfection under axial compression
using Level-1 routine BFACT (Ng¢ = —49.51517 Ib/in).
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Asyrmmatric Impacfaction Sensitivity of isotroeic ashell A-8 —- 35—3 6.C.
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Fig. 13 Imperfection sensitivity for long wave asymmetric imperfection under axial compression
(8S-3B.C.: Ny =—Ng, v =W =My =0; Noy = —49.51517 Ib/in).
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Fig. 14 Imperfection sensitivity for short wave asymmetric imperfection under axial compression
(8S-3B.C.: Ny =—Ng, v=W =My =0; Noy =-49.51517 [bfin).
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